手机浏览器扫描二维码访问
叶秋觉得,自己就算大学没考上去了蓝翔,也能成为顶尖的技术工人。
扯远了!
咳咳!
新鲜了一会儿后,叶秋开始收敛起心绪。
这个技能虽然很强,但对他证明冰雹猜想却没什么帮助。
眼下最重要的,还是好好提升自己的数学基础,只有把当代数学的一些基本知识点全部掌握,自己才有资格开始证明冰雹猜想。
叶秋拿起《数学原理》第一卷《集合论》,开始翻阅起来。
集合论是研究集合的结构、运算及性质的一个数学分支。
现代数学这一最重要的基础理论是康托在19世纪70、80年代创立的。
由平面(或空间)上一些点组成的集,称为“点集”
。
一个点集可以是某些孤立的点,也可以是某曲线上或某区域内的所有点。
可以把各种几何图形看成是一个点集,然后研究它所包含的点在位置及数量关系方面的共同特征,这样往往能够得到比直观更为深刻的结论。
有关点集的基本理论,称为点集论,而集合论讨论比点集更广泛、更抽象的一般集合。
集合论在数学中占有一个独特的地位,它的基本概念已渗透到数学的所有领域。
在几何、代数、分析、概率论、数理逻辑及程序语言等各个数学分支中,都有广泛的应用。
在大多数现代数学的公式化中,集合论提供了要如何描述数学物件的语言。
……
不知不觉间,叶秋的注意力全部集中到了这本纯英文版的教材里面去。
叶秋的眉头渐渐皱了起来,
过去一个多月,他基本上将高中数学以及竞赛数学从头到尾捋了一遍,集合,函数,三角函数,向量,导数,解析几何,圆与椭圆公式,统计概率,虚数各种概念都熟念于心。
但高中阶段,这些知识点大多都只是蜻蜓点水,并没有向学生揭示这些概念背后的一些深层内在的联系。
老师讲课的时候也大多只讲述考纲以内的概念,各种考题基本上换汤不换药。
而在这本书中,叶秋却发现,布尔巴基摒弃了分析、几何、代数、数论等的经典划分,而是以同构概念对数学内部各基本学科进行分类。
他们认为全部数学基于三种母结构:代数结构、序结构、和拓扑结构。
所谓结构就是“表示各种各样的概念的共同特征仅在于他们可以应用到各种元素的集合上。
而这些元素的性质并没有专门指定,定义一个结构就是给出这些元素之间的一个或几个关系,人们从给定的关系所满足的条件(他们是结构的公理)建立起某种给定结构的公理理论就等于只从结构的公理出发来推演这些公理的逻辑推论。”
一个数学学科可能由几种结构混合而成,同时每一类型结构中又有着不同的层次。
比如实数集就具有三种结构:一种由算术运算定义的代数结构;一种顺序结构;最后一种就是根据极限概念的拓扑结构。
三种结构有机结合在一起,比如李群是特殊的拓扑群,是拓扑结构和群结构相互结合而成。
因此,在这本书中,数学的分类不再象过去那样划分成代数、数论、几何、分析等部门,而是依据结构的相同与否来分类。
比如线性代数和初等几何研究的是同样一种结构,也就说它们“同构”
,可以一起处理。
这样,这本书从一开始就打乱了经典数学世界的秩序,以全新的观点来统一整个数学。
这是完全的体系化理论,从最简洁的数学结构出发,向读者揭示数学的本质。
在看这本书之前,叶秋对数学的认知实际上还处于相当浅显的阶段,数学在他看来,属于科学的工具,是一门计算科学。
而这本书,仿佛为他打开了一扇大门,让他首次得以窥见,数学海洋深处的一些本质性的东西。
read3();
...
本是千人疼万人宠的千金,却因皇权政变,让幸福的家庭一夜之间化为乌有。云洛慈为了完成皇伯伯和爹爹的遗愿,我甘愿放弃一切。月昭华洛洛,你可知道,自从第一眼见到你,便永世不愿忘记。蓝染...
轮回九转,吾又重生!万帝之师,重生归来!万界大战,龙帝抵御神族入侵,一死镇压神族万载!万年之后,龙帝挣脱天道束缚,轮回重生!纵死未悔心不灭,我以我血染苍天!重生九次,不死不灭之人,搅乱天地,掀起大陆风云!纵横十二禁区,横扫诸天万界,唯我无敌龙帝!...
一个现代人的灵魂在重生之后,偶然发现,自己携身带至的正气歌竟然在这个世界上是无上修儒宝典。修得浩然正气,震散千里邪魂。...
一个身世凄苦的少年面对上古魔神的传承众多手下的追随美貌的爱人可爱的小萝利他是如何建立自己的黑道帝国强大的金融集团如何找寻自己的的身世如何潇洒人生请看龙傲宇内...
三国,一个群星汇萃的时代。三国,一个光华夺目的时代。三国,一个令无数男儿热血奔涌的时代。三国,一个让芸芸众生心醉神迷的时代。三万里山河,五千年华夏,又有哪一段光阴能有它这样丰富多彩?那是一个无可比拟的时代,一提起就激情飞扬,一接近就难以自持。没能生于那个时代,对于我们来说,是幸,亦或不幸?或许,这真是一个小小的憾事。但幸好,我们还有足够充分的想象力,在这想象中,让我们去窥探,去评点,去还原,去丰富,去改变,去体味,去追寻,去思索在想象中,我们可以与英雄们共同呼吸那个时代的雨和风司雨新作我是阿斗,我不用人扶的姊妹篇,重生三国之公子刘琦,书号1099980。欢迎大家收藏,推荐,谢谢。...